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The thermodynamic behavior of the Bose–Hubbard model is solved for any
temperature and any chemical potential. It is found that there is a range of
critical coupling strengths lc1 < lc2 < lc3 < · · · in this model. For coupling
strengths between lc, k and lc, k+1, Bose–Einstein condensation is suppressed at
densities near the integer values r=1,..., k with an energy gap. This is known as
a Mott insulator phase and was previously shown only for zero temperature. In
the context of ultra-cold atoms, this phenomenon was experimentally observed
in 2002 (1) but, in the Bose–Hubbard model, it manifests itself also in the pres-
sure-volume diagram at high pressures. It is suggested that this phenomenon
persists for finite-range hopping and might also be experimentally observable.
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1. THE INFINITE-RANGE HOPPING BOSE–HUBBARD MODEL

Experimentally, the Mott insulator phase transition has recently been
observed (1) for a 87Rb Bose condensate in a three-dimensional optical
lattice potential. The physical model for this experiment corresponds to the
Bose–Hubbard Hamiltonian:

HBH=J C
x, y: |x − y|=1

(ag
x − ag

y )(ax − ay)+
U
2

C
x

nx(nx − 1)+C
x

Exnx, (1.1)

where Ex denotes the energy offset of the x-th lattice site due to the external
confinement of the atoms. (2) Here ax and ag

x are annihilation and creation
operators satisfying the usual commutation relations [ax, ag

y ]=dx, y and
nx=ag

x ax whereas the Bose model is hopping on a lattice with sites labelled



x=1, 2,..., V. The first term (J > 0) is the kinetic energy operator; the
second term describes a repulsion if l=u/2 > 0, as it discourages more
than one particle per site.

This model was originally introduced by Fisher et al. (3) without exter-
nal potential E. In ref. 3, the authors also analysed the infinite-range
hopping version of (1.1) but only for zero-temperature, and their analysis is
not exact. The infinite-range hopping model is given by the Hamiltonian

HV=
1

2V
C
V

x, y=1
(ag

x − ag
y )(ax − ay)+l C

V

x=1
nx(nx − 1), (1.2)

(Cf. also ref. 4.) This Hamiltonian is in fact a mean-field version of (1.1)
but in terms of the kinetic energy rather than the interaction. In particular,
as in all mean-field models, the lattice structure is irrelevant and there is no
dependence on dimensionality.

The model (1.1) and the mean field version (1.2) have been studied
before but mostly for zero-temperature, see refs. 3–8, using an analysis of
the ground state combined with perturbation theory or/and numerical
computations. Here we determine the corresponding phase diagram of the
infinite-range hopping Bose–Hubbard model (1.2) for any inverse tempera-
ture b > 0 and any chemical potential m.

A similar, but less general model was introduced by Toth. (9) (This
model was also considered by Kirson (10)). His model is a special case of
(1.2) where l=+., i.e., there is complete single-site exclusion. A disor-
dered version of Toth’s model was considered by Ma et al. (11) and the cor-
responding model with short-range hopping was analysed using path-
integral Monte-Carlo methods by Krauth et al. (12) A nice introduction to
the mathematical analysis of the short-range hopping version of (1.2), i.e.,
(1.1) without the last term, is ref. 13. The first proof of Bose–Einstein con-
densation in the original nearest-neighbor model (1.1) without external
potential E and with l=+., was achieved in ref. 24 using reflection posi-
tivity.

The grand canonical partition function corresponding to (1.2) is given
by

ZV= C
.

n=0
ebmn Trace e−bHV, (1.3)

where b is the inverse temperature, and the trace is over the n-particle sub-
space. The pressure p(b, m)=limV Q .

1
bV ln ZV in the thermodynamic limit

can be expressed as a variational formula using a formalism developed by
N. N. Bogoliubov Jr. (14, 15) (see also refs. 16–18) and applied to the boson
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gas by Ginibre. (19) (For an interesting recent application to a continuum
Bose gas model, see refs. 20 and 21.) This is done in Appendix A and the
result is:

p(b, m)=sup
r \ 0

3 − r2+
1
b

ln Trace exp[b((m − 1) n − ln(n − 1)+r(ag+a))]4 .

(1.4)

Here the trace is over the representation space of a single oscillator with
creation and annihilation operators ag and a, and number operator
n=aga. Even though this expression for the pressure is exact, the trace still
has to be evaluated numerically. Here we consider its implications for
Bose–Einstein condensation. Bose–Einstein condensation occurs in this
model if the maximizer r > 0, and in that case the density of the condensate
is given by r0=r2. To see this, notice that the kinetic energy term in the
Hamiltonian can be diagonalized by means of any orthogonal matrix Ok, x

satisfying O0, x=1/`V. Defining c#
k =;x Ok, xa#

x (k=0, 1,..., V − 1) we
have

1
2V

C
x, y

(ag
x − ag

y )(ax − ay)= C
V − 1

k=1
cg

k ck. (1.5)

Replacing this term by acg
0 c0+;V − 1

k=1 cg
k ck there is an analogous formula for

the pressure:

p(b, m, a)

=sup
r \ 0

3 −
r2

1 − a
+

1
b

ln Trace exp[b((m − 1) n − ln(n − 1)+r(ag+a))]4 .

(1.6)

Now, the density of the condensate is given by

r0= lim
V Q .

1
V
Ocg

0 c0P=−
dp
da
:
a=0

=r2. (1.7)

This trick for obtaining r0 of introducing a gap in the spectrum of the
kinetic term, is quite standard; see for example refs. 22 and 23.

By numerical computation of the trace in (1.4) we obtain the solution r
of the variational problem and find that there is Bose–Einstein condensa-
tion at low temperatures for the infinite-range hopping Bose–Hubbard
model (1.2). This analysis is performed for arbitrary coupling parameter l.
(The rigorous existence of Bose–Einstein condensation at low enough
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temperatures in fact only depends on a well-known general conjecture.) We
also show that the Bose–Einstein condensation disappears at densities near
the integer values r=1,..., k if the coupling parameter l lies in the range
lk < l < lk+1, where the values lk can be computed exactly. This specific
thermodynamic behavior corresponds to a ‘‘Mott insulator phase,’’ where
there is an energy gap for all excitations (cf. (2.13) and (2.14)). Our analysis
therefore extends the known behaviour of the model to arbitrary tempera-
tures.

2. ANALYSIS OF THE PHASE DIAGRAM

The phase diagram is determined by the maximization problem (1.4).
To find the maximizer we differentiate to get

2r=Oa+agP=
Trace(a+ag) exp[b((m − 1) n − ln(n − 1)+r(ag+a))]

Trace exp[b((m − 1) n − ln(n − 1)+r(ag+a))]
.

(2.1)

It is convenient to define

p̃(r)=
1
b

ln Trace exp[b((m − 1) n − ln(n − 1)+r(ag+a))] (2.2)

so that (2.1) reads 2r=p̃ −(r). Differentiating once more we have

p̃'(r)=b(A −OAP | A −OAP)H(r), (2.3)

where A=ag+a and ( · | · )H denotes the Bogoliubov scalar product (see,
e.g., refs. 19 and 25):

(A | B)H=
1

bZ
F

b

0
Trace[Age−(b − y) HBe−yH] dy, (2.4)

with Z=Trace e−bH and H=H(r)=(1− l) n+ln2 − r(a+ag) − mn. It
follows that p̃'(r) \ 0 for all r \ 0 so that p̃ − is increasing (p̃ −(0)=0). In
fact, graphs of p̃ − suggest that it is also concave, see Fig. 1. Indeed, a very
general conjecture by Bessis et al. (26) suggests that the derivatives should
have alternating signs. Some special cases of this conjecture have been
proved by Fannes and Werner. (27) Assuming the concavity of p̃ −(r), the
maximum in (1.6) must either be attained at r=0 or at a unique r > 0.
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Fig. 1. Illustration of p̃ −(r). The dotted line corresponds to the straight line 2r and its inter-
section with p̃ −(r) gives the solution of the variational problem.

The latter case applies when p̃'(0) > 2. But, p̃'(0) can be computed
exactly as H(0) is diagonal: H(0)=h0(n)=−(m+l − 1) n+ln2. The
denominator in (2.4) is

Z0= C
.

n=0
e−bh0(n)= C

.

n=0
eb[(m+l − 1) n − ln2]. (2.5)

To compute the numerator, remark that

Trace[(a+ag) e−(b − y) h0(n)(a+ag) e−yh0(n)]

= C
.

n=1
{e−yh0(n)ne−(b − y) h0(n − 1)+e−(b − y) h0(n)ne−yh0(n − 1)}. (2.6)

We therefore compute

F
b

0
e−yh0(n)e−(b − y) h0(n − 1) dy=

e−bh0(n) − e−bh0(n − 1)

h0(n − 1) − h0(n)
. (2.7)

It follows that

p̃'(0)=
2

Z0
C
.

n=1
n

e−bh0(n) − e−bh0(n − 1)

h0(n − 1) − h0(n)
. (2.8)

Solving the equation p̃'(0)=2 yields the critical inverse temperature
bc(m, l). For small l, bc(m, l) is simply an interpolation between these
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asymptotic graphs, but for larger values of l it diverges in certain intervals
of m. This can be understood as follows. We write the equation p̃'(0)=2 in
the form Df(b, m, l)=0 where

Df(b, m, l)=1+
1

m − 1
+ C

.

n=1
e−bh0(n) 31 −

n
Dh0(n)

+
n+1

Dh0(n+1)
4 (2.9)

and Dh0(n)=h0(n − 1) − h0(n)=m − 1 − 2l(n − 1). Working out the factor
in brackets yields

Df(b, m, l)=1+
1

m − 1
+ C

.

n=1
e−bh0(n) (2ln − l − m+1)2+m − (l − 1)2

(m − 1 − 2ln)(m − 1 − 2l(n − 1))
. (2.10)

For 1 < m < 1+2l the first exponential term dominates. The corresponding
factor is only negative if m is not in the interval between m− and m+ given
by

m± =l+1
2 ± 1

2 `4l2 − 12l+1. (2.11)

Of course, this can only happen if 4l2 − 12l+1 \ 0, i.e., if

l \ l1=1
2 (3+`8). (2.12)

Similarly, for 1+2(k − 1) l < m < 1+2kl one finds a gap in the interval
[mk, − , mk, +] given by

mk, ± =(2k − 1) l+1
2 ± `l2 − (2k+1) l+1

4 (2.13)

which can happen only if

l \ lk=k+1
2+`k(k+1). (2.14)

If m approaches m± from outside the forbidden interval, the critical inverse
temperature bc diverges.

To compute the inverse critical temperature as a function of the
density we must solve implicitly the equation

r=r(b, m)=
“p
“m

=
;.

n=1 neb[(m+l − 1) n − ln2]

;.

n=0 eb[(m+l − 1) n − ln2]
(2.15)

with b=bc(m). The gaps in m do not mean that there are gaps in the
density. In fact, for large b the function r(b, m) defined by (2.15) tends to a
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Fig. 2. Illustration of the particle density r(b, m) as a function of m for different values of b.
Notice that, for b Q ., r(b, m) tends to a step function.

step function: r(b, m) ’ 0 if m < 1 and r(b, m) ’ k if 2(k − 1) l+1 < m <
2kl+1, see Fig. 2.

Therefore for non-integer values of r ¥ (k − 1, k), the corresponding
m(b, r), solution of (2.15) for fixed b, is m(b, r) ’ 2(k − 1) l+1 as b Q .

and so, the curves b(m, r) defined implicitly by (2.15) (m fixed) have
asymptotes at m=2(k − 1) l+1, i.e.,

lim
m Q 2(k − 1) l+1

b(m, r)=+..

Since mk − 1, + < 2(k − 1) l+1 < mk, − , the curves b(m, r) and p̃'(0)=2
always intersect. This intersection corresponds to the critical inverse tem-
perature bc(m). Numerical solution of the implicit equations (2.15) and
p̃'(0)=2 yields the phase diagram of Fig. 3.

It is of interest to analyse the asymptotic behavior for small l. Assum-
ing that bl ° 1 we can replace the terms e−bh0(n) in (2.10) by enb(m − 1). Using
also the approximation

−
n

Dh0(n)
%

n
1 − m

11 −
2(n − 1) l

1 − m
2

the series can be summed:

Df(b, m, l) % −
m

1 − m

1
1 − x

+
4l

(1 − m)2

x
(1 − x)2 , (2.16)
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Fig. 3. The critical inverse temperature for a number of values of the coupling strength l.
The lower curve is for the free lattice gas: l=0, the top curve is for the case of complete single-
site exclusion l=+.. Intermediate values are, from the bottom up: l=2, 2.5, 3, and 5.

where x=eb(m − 1). Therefore, at b=bc,

x
1 − x

=
m(1 − m)

4l
. (2.17)

On the other hand, the same approximation in (2.15) yields

r %
x

1 − x
. (2.18)

Combining the two equations we see that we must have m < 1 and
16rl < 1. Solving for m we have m=1

2 (1 − `1 − 16rl) and

bc %
2

1+`1 − 16lr
ln 1 1

r
+12 . (2.19)

In the limit l Q 0 this clearly agrees with the free Bose gas limit
b free

c (r)=ln(1+1
r).

On the other hand, for large m, a careful asymptotic analysis of (2.10)
shows that the asymptotic behavior of bc is given by

bc %
2l

m
(m ± 1 > l). (2.20)
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For large m, i.e., for large densities r, Eq. (2.15) implies that

r=r(b, m) %
m+l − 1

2l
(r ± 1),

(see the straight line of Fig. 2). Combined with (2.20) we get

bc % 1/r (r ± 1), (2.21)

which corresponds also to the free Bose gas limit b free
c (r) at large densities r.

We proceed to compute the pressure p as a function of the density.
For this, we need to approximate the trace in (2.2) in case b > bc

(otherwise the trace is a simple sum which can be easily truncated). This
can be done using the Trotter product formula, where, for greater
accuracy, we use the formula

On| e r(a+ag) |mP=`n!m! C
n N m

k=0

rn+m − 2k

k!(n − k)! (m − k)!
e r2/2. (2.22)

The resulting graphs, for several values of l and for b=2 are depicted in
Figs. 4 and 5.

Fig. 4. The pressure vs. specific volume diagram for b=2.1 and l=0 (free gas, lower
graph), 0.1, 1, 3, 5, and +..
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Fig. 5. The pressure vs. specific volume diagram at higher values of the pressure. The
dashed line is the free gas. The graph with s-bend corresponds to l=3, the graph with
horizontal section corresponds to l=5, the dashed dotted line is l=+..

Figure 4 shows that for small values of l the pressure is close to that
of the free lattice gas except for small values of the specific volume v, where
it diverges. There is a clear kink in all the graphs corresponding to the
onset of Bose–Einstein condensation. As l increases, the onset of conden-
sation moves to lower values of v. This point is the right most point of the
bc versus r curve of Fig. 3 where it intersects with the line b=2. For l > l1

we expect another feature in the graph of p(v) at even smaller values of v.
This is visible in Fig. 5, but occurs at much higher pressures and cannot,
therefore, be seen at the scale of Fig. 4.

Similarly, at still higher pressures, one observes another s-bend in the
graph for lambda-values above l2. Interestingly, it seems that the highest-
pressure transition is of higher order whereas the lower transitions are first-
order: see Fig. 6.

The graph of the condensate fraction, i.e., the density of the conden-
sate divided by the total density, is also of interest. It is shown in Fig. 7.
Notice that the condensate at small values of l is higher than that for the
free gas, whereas it is lower for higher values of l. This is, so far,
unexplained.
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Fig. 6. The pressure vs. specific volume diagram at still higher values of the pressure. The
dotted line corresponds to l=3 whereas the solid one is for l=5.

Notice also that there is a clear modulation in the condensate fraction.
This is not a computational error but is due to the suppression of the con-
densate at integer densities. A more accurate computation shows this more
clearly: see Fig. 8.

As previously announced, the suppression of Bose–Einstein condensa-
tion for lk < l < lk+1 at densities near the integer values r=1,..., k corre-
sponds to a ‘‘Mott insulator phase,’’ where we find an energy gap to all
excitations (cf. (2.13) and (2.14)). This phase transition was found pre-
viously in refs. 3–8, but only at zero-temperature, where it is called a
quantum phase transition. Here we have obtained the phase diagram for
arbitrary temperature.

An intuitive explanation for the suppression of Bose–Einstein con-
densation near integer values of the density is that at or near these values
the particles tend to be evenly distributed over the lattice points and the
strong repulsion tends to restrict their freedom to hop from site to site. The
resulting states are almost eigenstates of the number operators nx and
therefore asymptotically almost orthogonal to the ground state of the
kinetic energy. This explanation for the existence of a ‘‘Mott insulator
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Fig. 7. The condensate fraction as a function of the specific volume for several interaction
strengths. The dotted straight line is the free gas (l=0) condensate fraction. The dashed
dotted line just above this corresponds to l=0.1. Subsequent graphs correspond to l=1, 3, 5
and +. from top to bottom. The condensate fraction for l=5 occurs for v < 0.5 and
1.2 < v < 4. Notice also the oscillation of the condensate fraction due to partial suppression of
the condensate at intermediate values of the density for l=1, 3, 5.

Fig. 8. The condensate fraction for l=3 (dashed line) and l=5 (solid line).
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phase’’ is quite generally valid and we may expect therefore that this phe-
nomenon should occur in general systems of bosons on a lattice with strong
repulsion. (In the presence of an external potential given by ;x Exnx (cf.
(1.1)) this argument is no longer strictly applicable, but in the region where
Ex is nearly constant, the variation of the potential would be less than the
energy gap and one may nevertheless expect the phenomenon to persist.)

In their experiment, Greiner et al. (1) were able to experimentally
change the parameter l=U/2J by modifying the optical lattice potential
depth. They were thus able to go from the Bose condensation phase to the
Mott insulator phase and back, i.e., to cross the critical value lc, 1,
concluding that the phenomenon is reversible.

Our detailed analysis shows that, for strong repulsion, there are
several singularities in the pressure-volume lines (Figs. 4, 5, and 6) at dif-
ferent pressure scales. It would be interesting if these features could be
observed experimentally. However, the dilute-gas experiments of ref. 1 and
others are not suitable for this purpose as it is impossible to reach suffi-
ciently high pressures and densities. Solid-state systems may be more pro-
mising in this regard.

APPENDIX A

Let

c0 —
1

`V
C
V

x=1
ax, (A.1)

H0
V — C

V

x=1
nx+l C

V

x=1
nx(nx − 1), (A.2)

NV — C
V

x=1
nx, (A.3)

pV(b, m) —
1

bV
ln TrFB

{e−b(HV − mNV)}, (A.4)

where FB is the corresponding boson Fock space. Note that (1.2) can be
written as

HV=−cg
0 c0+H0

V. (A.5)

Define the ‘‘approximating Hamiltonian’’ as a function of the complex
parameter z by:

HI
V(z) — V |z|2 − z `V cg

0 − z̄ `V c0+H0
V. (A.6)
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Then,

HI
V(z) − HV=V 1 cg

0

`V
− z̄2 1 c0

`V
− z2 \ 0. (A.7)

Let

pI
V(b, m, z) —

1
bV

ln TrFB
{e−b(HI

V(z) − mNV)}. (A.8)

To find the thermodynamic limit of pV(b, m) (A.4) we follow the idea of
paper (19) where the author proves the exactness of the Bogoliubov approx-
imation for a non-ideal Bose-gas with superstable interaction. (29)

First, we introduce the Hamiltonians HV(n) and HI
V(n, z) respectively

by

HV(n)=HV − `V (n̄c0+ncg
0 ),

HI
V(n, z)=HI

V(z) − V(n̄z+nz̄).
(A.9)

with source n ¥ C. Let pV(b, m, n) and pI
V(b, m, n, z) the two corresponding

pressures. By the Bogoliubov inequality (18, 29) for HV(n) and HI
V(n, z), one

has:

0 [ inf
z ¥ C

{pV(b, m, n) − pI
V(b, m, n, z)}

[
1
V
O(cg

0 − `V z̄0)(c0 − `V z0)PHV(n), (A.10)

for any complex parameter z0, see (A.7). Defining

d0=c0 −Oc0PHV(n)

we have [d0, dg
0 ]=1 and hence

dg
0 d0=1

2 {dg
0 , d0} − 1,

with {X, Y} — XY+YX. The inequality (A.10) then implies:

0 [ pV(b, m, n) − sup
z ¥ C

pI
V(b, m, n, z) [

1
2V

O{dg
0 , d0}PHV(n). (A.11)

for z0=Oc0PHV(n)/`V. From a spectral decomposition of the Hamiltonian
HV(m, n) — HV(n) − mNV:

HV(m, n) kn=Enkn,
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one obtains

O{dg
0 , d0}PHV(n)=e−bVpV(b, m, n) C

m, n
|Amn |2 (e−bEn+e−bEm), (A.12)

with Amn=(km, d0kn). Notice that

(e−bEn+e−bEm)=2
e−bEn − e−bEm

b(Em − En)
b(Em − En)

2
(e−bEn+e−bEm)
(e−bEn − e−bEm)

=2
e−bEn − e−bEm

b(Em − En)
b(Em − En)

2
coth 1b(Em − En)

2
2 .

The inequality

cosh x −
sinh x

x
= C

.

n=1

2n
(2n+1)!

x2n [
x sinh x

3
,

implies that x coth x [ 1+x2/3 for all real x. So, we obtain for (A.12) the
following upper bound:

O{dg
0 , d0}PHV(n) [ 2e−bVpV(b, m, n) C

m, n
|Amn |2 (e−bEn − e−bEm)

b(Em − En)

+
1
6

e−bVpV(b, m, n) C
m, n

|Amn |2 (e−bEn − e−bEm) b(Em − En).

(A.13)

In terms of the Bogoliubov scalar product (., .)H defined by (2.4) for
H=HV(n), the inequality (A.13) can be written as

1
2
O{dg

0 , d0}PHV (n) [ (d0, d0)HV(n)+
b

12
O[dg

0 , [HV(m, n), d0]]PHV(n). (A.14)

(This inequality had already been proven in ref. 30, see also ref. 17). From

C
V

x=1
[cg

0 , [n2
x, c0]]=

1
V

C
V

x=1
(4nx+1),

C
V

x=1
[cg

0 , [nx, c0]]=1, [cg
0 , [cg

0 c0, c0]]=1,
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one has

[dg
0 , [HV(m, n), d0]]=[cg

0 , [HV(m, n), c0]]=−[cg
0 , [cg

0 c0, c0]]

+(1 − m − l) C
V

x=1
[cg

0 , [nx, c0]]

+l C
V

x=1
[cg

0 , [n2
x, c0]]=−m+

4lNV

V
.

We now use the fact that the model HV is superstable. In fact by the
Cauchy–Schwarz inequality,

HV − mNV \ − (l+m) NV+l
N2

V

2V
.

It follows that the pressure pV(b, m, n) is defined for any m ¥ R and n ¥ C
and the solution ẑV(b, m, n) of

sup
z ¥ C

pI
V(b, m, n, z)=pI

V(b, m, n, ẑV(b, m, n))

satisfies |ẑV(b, m, n)|2 [ (l+m0)/l for m [ m0 and |n| [ r0. Note also that

7 c0

`V
8

HV(n)

7 cg
0

`V
8

HV(n)
[ 7cg

0 c0

V
8

HL(n)

[ 7NV

V
8

HV(n)
=“m pV(b, m, n).

Now, since pV(b, m, n) is a convex function of m and also of |n|, there is a
uniform bound

M=max{“m pV(b, m0, r0), B/C}

such that

˛ (Oc0/`VPHV(n) (b, m))2 [ ONV/VPHV(n) (b, m) [ M,
|ẑV(b, m, n)|2 [ M,

(A.15)

for m [ m0 and |n| [ r0. Therefore, there exist u and w such that the estimate
(A.11) for m [ m0 becomes:

0 [ pV(b, m, n) − sup
z ¥ C

pI
V(b, m, n, z) [

1
V

[u+w(dg
0 , d0)HV(n)]. (A.16)
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Now we can reason along the standard lines of the Approximation
Hamiltonian Method (see refs. 17 and 18). First we note that

(d0, d0)HV(n)=
1
b

“n“n̄ pV[HV(n)]. (A.17)

By the (canonical) gauge transformation c0 Q c0e ij, j=arg n, one finds
that in fact

pV[HV(n)]=pV(b, m; |n| — r).

Then passing in (A.17) to polar coordinates (r, j) we obtain:

(d0, d0)HV(n)=
1

4br
“r(r“r pV). (A.18)

Let z=|z| e ik, k=arg z. Then from (A.9), we obtain

pV(b, m, n) − sup
z ¥ C

pI
V(b, m, n, z)=pV(b, m, n) − sup

|z|, k

pI
V(b, m, re ± ij, |z| e ± ik)

=pV(b, m, n) − sup
|z|

pI
V(b, m, r, |z| e ± ij)

— inf
|z|

DV(r). (A.19)

Consequently, by (A.16) we find that

F
R+e

R
r inf

|z|
DV(r) dr [

1
V
3u

(2R+e) e

2
+

w
4b

(r“r pV) :
R+e

R

4 , (A.20)

for [R, R+e] … [0, r0]. Note that by (A.15) we have

“r pV=2 |Oc0/`VPHV(n) | [ 2 `M, m ¥ C0 … R, |n| [ r0. (A.21)

Therefore (A.20) takes the form

F
R+e

R
r inf

|z|
DV(r) dr [

1
V
3u

(R+e)2 − R2

2
+

w
2b

`M (2R+e)4 . (A.22)

By (A.15), we obtain

|“r inf
|z|

DV(r)| [ 4 `M, (r ¥ [R, R+e]),
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which implies

inf
|z|

DV(R) [ inf
|z|

DV(r)+4 `M (r − R).

Hence,

inf
|z|

DV(R)
(R+e)2 − R2

2
[ F

R+e

R
r inf

|z|
DV(r) dr+4 `M 1 r3

3
− R

r2

2
2 :R+e

R
,

and by (A.22), we find

inf
|z|

DV(R) [
1
V
3u+

w
b

`M e−14+2 `M e
R+2

3 e

R+1
2 e

. (A.23)

Since e > 0 is still arbitrary, in the thermodynamic limit one gets the
optimal value for the right-hand side of (A.23) by taking e ’ 1/`V. Then,
for large V we obtain from (A.23) the following estimate:

0 [ pV(b, m, n) − sup
z ¥ C

pI
V(b, m, n, z) [

const

`V
, (A.24)

which is valid for m < m0 and |n| [ r0. Since m0 is also arbitrary, for n=0,
we deduce

p(b, m)=sup
z ¥ C

pI(b, m, z), (A.25)

for any fixed m ¥ R. Now notice that HI
V(z) is in fact a sum over x of

independent terms and the trace in (A8) decouples. The result is

pI(b, m, z)= − |z|2+
1
b

ln Trace exp [b((m − 1) n − ln(n − 1)+(zag+z̄a))],

(A.26)

where we recall that the trace is over the representation space of a single
oscillator with creation and annihilation operators ag and a, and n=aga.
Finally, using the gauge transformation

Uj aUg
j=ae−ij=ã, j=arg z,

combined with (A.25) and (A.26) we get (1.4).
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